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Symmetry theory and Lagrangian inverse problem for 
time-dependent second-order differential equations 

Jose F Cariiiena and Eduardo Martinez 
Departamento de Fisica Teorica. Universidad de Zaragoza, 50009 Zaragoza. Spain 

Receibed 20 July 1988 

Abstract. A set .Fr of vector fields in the evolution space € playing the role of Newtonian 
vector fields, with respect to a second-order equation field r, is introduced and endowed 
Nith a C’-(€)-module structure. A dual set .dG is used for giving an answer to the 
Lagrangian inverse problem. The symmetry theory is also developed in this framework 
and. in particular. the characterisation of symmetries of in terms of the transformation 
properties of the Lagrangian L is also given. 

1. Introduction 

A generalisation of thc concept of infinitesimal symmetry of a regular Lagrangian L was 
proposed in a recent paper (Marmo and Mukunda 1986) in order to have a converse 
of the well known Noether’s theorem for autonomous dynamical systems defined by a 
regular Lagrangian L. This generalisation allows us to make use of velocity-dependent 
transformations, and establishes in this way a one-to-one correspondence between 
first integrals of a second-order differential equation field r admitting a Lagrangian 
description and generalised infinitesimal symmetries of such a Lagrangian. A relevant 
role in the proof of this theorem is played by the set S r  (Sarlet er a1 1984) associated 
with the second-order differential equation field r. 

In this paper we will show hou i t  is possible to enlarge this result to cover the 
case of a time-dependent Lagrangian dynamics. (Other alternative approaches to deal 
with time-dependent systems as being constrained systems can be found in Marmo et 
a/ (1983) and Cariiiena and Ibort 1985a, b).) In order to do  that we first generalise 
in $3 the set 3 r  to the case of r being a second-order differential equation vector field 
on the evolution space E = IR x T M .  We also generalise in 43 the C”(E)-modules 
and XF, two sets which have been shown to be very useful sets both in the treatment 
of dynamical symmetries of r, and in the so-called inverse problem of Lagrangian 
mechanics (Sarlet er al 1984, Cariiiena er al 19891, and an application to the latter 
is given in $4. Finally in $5 we study the symmetries of r and give conditions for 
them to be Cartan symmetries. The possible relation with the existence of alternative 
Lagrangian descriptions and the determination of constants of the motion is also given. 

2. Notation 

Let M be an n-dimensional differentiable manifold. The evolution space E = IR x T M  
may be identified with the first jet bundle of (smooth) curves in M ,  J ’ ( IR ,M) .  Any 
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2660 J F Carifiena and E Martinez 

vector field r E $ ( E )  such that ( r , d t )  = 1 and whose integral curves are all one-jet 
prolongation of curves on M is called a second-order differential equation field (SODE). 
They are distinguished by the following conditions: 

( r , d r )  = 1 (r,8") = O  a =  1 ,..., n 

where {e") is a local basis of the set of contact 1-forms, 8" = dx" - U" dt, and t is the 
canonical coordinate of IR. In local coordinates ( t ,  xu, U") of the bundle IR x T M ,  the 
local expression of such a vector field is 

s i: d r = - + u ~ - + f U -  
d t  dx" d U" 

where f '  E C" ( E ) .  
A remarkable fact is that the manifold E carries a type (1, l )  canonical tensor field 

S ,  called the vertical endomorphism (Crampin et a1 1984, Saunders 1987), which is 
characterised by the following properties. 

(i) S vanishes on vertical and SOD€ vector fields, and its images are vertical vectors. 
(ii) S(d/?t) = -A, where A denotes the Liouville dilation field of the vector bundle 

E + I R x M .  
Its coordinate expression is 

2 
C U" 

s = CO e". 
The dual operator of S will be denoted S * ,  i.e. (X ,S*cr )  = ( S X , r ) .  

It has also been proved that if D is a SODE the following relations hold: 

( Y D s ) ( D )  = 0 
Y D S  O S  = - S O  Y D S  = S 
( 2 ~ s ) ~  = I - D E3 dt 

where I is the identity tensor in E .  

a vector field 
I t  is well known (see e.g. Crampin et a1 1984, Sarlet and Cantrijn 1981) that, given 

d i: 
C t  dx" 

x = I T 7  +vu-  

on IR x M there i s  an associated vector field X " )  on E ,  called its first prolongation, 
such that X " )  projects onto X and it preserves the distribution defined by the contact 
1 -forms 8". The coordinate expression of X " )  is 

where 5" = 4" - v ' a ,  and the notation h, with h a function on the base W x M ,  means 
h = dh/d t  + t.ltdh/2x". 

3. The sets Xr, X2";. and AV; 

The fact that X ( I )  preserves the distribution defined by the contact 1-forms implies 
that, if D is a SODE, then S ( Y X o l D )  = 0, or more specifically 2 Z X ~ ~ + D  = -UD + V ,  with 
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V being a vertical vector field, and then the (flow of the) first prolongation vector field 
x"' transforms every SODE into another SODE, up to a time reparametrisation if ir # 0. 

The set b r  will be defined by means of this property but only for one specific 
SODE r, not necessarily for all SODE. That is, the elements of X r  are those vector fields 
X E b ( E )  such that S(6PrX) = 0. 

Its local expression is given by 

(a, f' local functions on E )  s 2 x = o r  + V L I -  + r(q')r" 
SXCJ 

from which i t  is evident that the vector field X '  = X + f r  fulfils the same property for 
any function f E C " ( E ) .  Actually 

and the two terms on the right-hand side vanish. Thus it suffices to take only one 
element as a representative of the class { X  + frlf E C " ( E )  1, and in particular we 
choose the vector field X such that (X,dt) = 0. This choice implies that [ r ,X]  is not a 
SODE but a vertical vector field, because 

( [ r , X ] ,  dt) = IPr(X, dt) + ( X ,  IPrdt) = IPr(X, dt) = 0. 

In the following we will denote by X r  the set 

.?Tr = X E J ( E )  I S ( 9 r X )  = 0 and (X,dt) = 0 )  

where r is a given SODE field. 

C'(E)-module structure by means of the product 
In much the same way as in the autonomous case, b r  can be endowed with a 

The map n r : J ( E )  -, b(€), given by nr(X) = X + S ( Y r X ) ,  is a morphism of C % ( E ) -  
modules that is a projection map onto J r .  

The set .A!'; is defined in a similar way: 

The condition S ' (9rp)  = 0 requires p to have the following local expression: 

p = pdt + pcld" + r(pU)y" (with p,  p" local functions on E )  

where (dt, P,  y L J )  is the local basis dual of that defined by the SODE field r ,  namely 
(r,?/Z.P,?/?P). Moreover, the condition ( T , p )  = 0 implies that p = 0. If a product 
by smooth functions f E C ' ( E )  is defined by 

then .M; becomes a C"(E)-module and the map ? ; : A i ( € )  -, A ' ( E ) ,  given by 

s; ( r )  = c( - S * ( P r a )  - (r, r)di 
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is a morphism of CT(E)-module onto A;. 
For the sake of completeness we will consider the set 

and in this case no additional restrictions are needed because if 4 E 3; then (r, 4) = 0. 
In fact. we have 

and both terms vanish. 
The product by smooth functions and the projection on %; are given respectively 

by 

The sets X; and A; are closely connected by Y r S '  : 

a relation which would not be possible without the aforementioned restrictions. 

4. The Lagrangian inverse problem 

The sets 3; and A; may be used for establishing an alternative statement of the 
inverse problem theorem. We will say that a SODE r is Lagrangian if there exists 
L E C " ( E )  such that iroL = 0, where w~ = -dOL and OL is the Poincare-Cartan 
I-form O L  = L dt + S*(dL) .  The Lagrangian L does not need to be regular. Then the 
Lagrangian inverse problem theorem may be stated as follows. 

Theorem. The three statements 
(i) the SODE r is Lagrangian; 
(ii) there exist a I-form 4 E S; and a function f E C " ( E )  such that 4 + f dt is an 

( i i i )  there exists a closed I-form ct E Z ' ( E )  such that Yr(r;(a)) = 0; 
exact I-form; 

are equivalent. 

Proof: First we prove that properties (i) and (ii) are equivalent. Let r be a Lagrangian 
SODE vector field, i.e. there exists L E C " ( E )  such that iroL = 0, or in an equivalent 
way lPrOL = dL because irOL = L. If we take 4 = dL - (YrL)dt ,  since Y r d t  = 0 
and S*(dt) = 0, we see that 

Yr(S'(4)) - 4 = Yr(S*(dL)) - dL + Yr(Ldr) 
= Yr{S'(dL) + Ldt)  - dL 
= Y r @ ~ - d L = 0  

and therefore q5 E S; and the I-form 4 + ( Y r L )  dt is the exact I-form dL. 
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Conversely if 4 E X: and there exists a function f E C”(E) such that $+f dt = dL, 
then irdL = i r 4  + f = f since i r 4  = 0, and 

0 = Yr(S*(+)) - 4 = gr(S’(dL))  - dL + Y r L d t  = Yr{S’(dL) t Ldt )  - dL 

and therefore L is a Lagrangian (which might not be regular) for r. 

x E B ’ ( E )  a solution of the equation i r r  = L. Then 
Now we prove the equivalence of (i) and (iii). Let L be a Lagrangian for and 

so that t ; ( x )  is r-invariant. 
Finally, let x be a closed I-form such that Yr(r;(r))  = 0. If we take L = irx then 

T;(Z) = x - ( r , r ) d t  - S’(Yr2) = x - Or. 

and 

then the function L is a Lagrangian for r. 
Property (iii) provides us a geometrical interpretation of the results of Hojman er a1 

( 1983) avoiding the use of acceleration-dependent Lagrangians that, moreover, would 
be degenerate. 

5. Symmetries and Noether’s theorem 

The sets %: and are also useful in the study of symmetries of the SODE r. Actually, 
the 2-form W L  satisfies iroL = 0, i V Y r W L  = 0 and O L ( V ,  V ’ )  = 0 V V ,  V’ E %‘(E), 
so that the map & L : X ( E )  -+ A ‘ ( E )  defined by contraction, i.e. G L ( X )  = i x o ~  maps E r  
onto A;. Moreover, since Y r o L  = 0 holds, & j ~  maps symmetries of r on r-invariant 
I-forms in so that if L is regular there is a one-to-one correspondence between 
infinitesimal symmetries of r in the set J r  and r-invariant 1-forms in A;. 

Let X be a symmetry of r. If the I-form px is defined by px = G L ( X ) ,  then we get 
the following. 

( i )  If px E B ’ ( E ) ,  say px = dG, then X is a Cartan symmetry (Prince 1983), i.e. 
-LPxwL = 0, because 9 x 0 ~  = d(ixOL - G). 

( i i )  If  px B ’ ( E )  but there exists a closed 1-form x E Z1(E)  such that px = T ; ( Z ) ,  
then the function L’ = irr is a Lagrangian subordinate (Marmo 1975) to L, oL = 
dpx = Y X W L .  Under the assumption that L is regular, the relations 

i R I x , o L  = ixwL, dt(R(X)) = 0 VX E b ( E )  

uniquely define a type ( 1 , l )  tensor R, for which we symbolically write R = ( 6 ~ ~ )  o (GLj), 
i.e. i t  is r-invariant. Therefore Tr(Rk) are constants of the motion (Crampin 1983). 

(iii) If neither (i) nor (ii)  hold, we do not obtain any subordinate Lagrangian, but 
in the same way as in (ii), Tr(Rk) are constants of the motion where R stands now for 
R = (GL’) 0 (dpx). 

h 
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Point (ii) explains the mechanism used in Sarlet (1983) to obtain dynamical sym- 
metries. Let 2 E Z 1 ( E )  be a solution for L = irx . Then we have seen that p~ = 7;(51) 
is r-invariant and there is a uniquely defined dynamical symmetry X in Xr such that 
h L ( X )  = p L .  Thus, every Lagrangian for r is associated with a special dynamical sym- 
metry of I-. Moreover, for each pair of equivalent Lagrangians L I ,  L2 there exists an 
associated sequence of dynamical symmetries { R k ( X l ) ,  R k ( X z ) }  where R = (6;:) o ( h ~ ? )  
and h L , ( X , )  = pL,, i = 1,2. The four infinitesimal symmetries obtained by Sarlet (1983) 
are X I ,  XZ, R - ’ ( X I )  and R(X2) .  

Finally, we give a generalised Noether’s theorem showing that a Cartan symmetry 
is, in this approach, the same thing as a Noether symmetry 

Let G be a first integral of r. Since dG E M*,, there is one vector field X E Xr such 
that ~ L ( X )  = dG. Obviously [ r . X ]  = 0. If the function F is defined by F = G + ixOL 
then Y X O L  = d F  and when a contraction with the dynamical field is considered we 
will get 

Moreover, if we denote X ( D )  = l i ~ ( X )  then, since the relation X ( D )  = X + S [ V , X ]  
where V = D - r, we see that 

Y x ~ D I L  - YDF = YpxL - 9 r F  + 9ps[, .x]L - YI F 
= i [ I  .,y](dL o S )  - i b  d F  
= i I  Y,y(dL o S )  - 9px ( i b  (dL o S ) )  - ir d F  
= i~ jY,y(dL 0 S) - d F )  

and when taking into account that i ,  dt = 0 and 9px dt = 0 we will obtain 

~ ~ ~ I D ~ L - Y D F  = i ~  j Y X ( d L o S + L d t ) - d F )  = i ~  ( Y x O L - ~ F )  = O .  

Thus we can associate with each constant of motion G a unique Cartan symmetry 
X ( T )  such that 

Conversely, let X E S ( E )  and F E C ” ( E )  be such that this relation holds. Without 
loss of generality we can assume that X E .Fr .  Then G = i y O L  - F is a first integral 
of r because 

Y r ( i X O L  - d F )  = Y,yL - YrF = 0. 

Now subtracting Y x , D I L  - Y D F  and Y’xL - 4VrF 

so that 4 0 x 0 ~  - d F  is a semibasic 1-form. But Y X O L  - d F  = i x w ~  - dG E A:, and 
this is not possible except if i t  vanishes. Thus 9 x 0 ~  - d F  = 0 and X is a Cartan 
symmetry. 
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Notice that the condition Y x ( D , L  = Y D F  V D SODE is actually two equations, 
6 p x ( ~ ~ ~ ) L  - Y D " F  = 0 with Do a particular SOD€ and Y s [ ~ . , x I L  - Y V F  = 0 for all 
vertical vector fields V .  In coordinates 

where 

s s 
c xu s vu 

x = v u ,  + r(V')-. 
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